
dak
scientific and technical undertakings

Copyright © 2020 Douglas A. Kerr. All rights reserved.

3102 Thunder Road
Alamogordo, New Mexico 88310

Douglas A. Kerr, P.E. (Ret.)
Principal

575-921-6795
doug@dougkerr.net

TECHNICAL REPORT

Subject: MusicXML—the duration element

Issue: 1 Reference: MusicXML_duration.doc

Date: December 22, 2020

Author: Douglas A. Kerr, P.E. (Ret.)

To: File

ABSTRACT AND INTRODUCTION

MusicXML is a language for transporting musical scores between musical notation
programs. It describes the score of interest in terms of its graphical notational
symbols and their arrangement on the page. It also conveys further details of how
the score is to be “played”.

An important (albeit optional) encoding of the MusicXML element for a note is the
element <duration>. The MusicXML documentation does not clearly explain the
intended meaning of <duration>. As a consequence, different notation program
developers have taken drastically different views as to how the value of that
element should be interpreted when reconstructing the score. As a result the
universal interchange of scores via MusicXML is severely compromised.

This report describes this situation, and suggests an “understanding” of the
meaning of the element <duration>.

1 ADMINISTRATIVE

1.1 Report not sponsored

This report, and the research underlying it, was not sponsored by, nor done at the
behest of, any external organization.

1.2 Distribution

This report is not “published”, but its distribution is not limited.

MusicXML—the duration element Page 2

1.3 Disclaimer

The author has used his best professional skill and available information in the
preparation of this report, but makes no representation that it is accurate or useful
for any purpose. The reader who relies upon this report does so at his own risk,
and the author cannot be responsible for any result not deemed satisfactory.

2 GENERAL

2.1 Reader background

It is hoped that the reader is generally familiar with musical notation, with the
concept of music notation programs, and with the basics of the MusicXML
language.

But, considerable background pertinent to this topic is given in the companion
technical report, “MusicXML—background”, by the same author. It is probably
available where you got this. I commend it to the reader of this report.

2.2 Report not sponsored

This report, and the research underlying it, was not sponsored by, nor done at the
behest of, any external organization.

2.3 Distribution

This report is not “published”, but its distribution is not limited.

3 BACKGROUND

3.1 Time

We will be concerned with two kinds of “time”:

1. Musical time is abstract, and quantifies the “flow” of the musical structure of
the notation itself. It is typically denominated in measures, beats, and in some
cases, fractions of a beat.

2. Clock time is the familiar “time”, and may be denominated in hours, minutes,
seconds, and in some cases, fractions of a second.

3.2 “Era” vs’ “duration”

Often in this report we will hear of some event that starts at a certain time and
continues for a certain time, such as the sounding of a note in play.

The length of time occupied by this event is referred to as its duration. That term
does not properly include consideration of when the event commences.

MusicXML—the duration element Page 3

The span of times occupied by this event is spoken of as its era. This term includes
consideration of when the event commences as well as its duration (or,
alternatively, when it commences and when it finishes).

A homey example of the use of these terms is this: A certain store is open today
from 8:00 am through 7:00 pm. The era of its operation is 8:00 am through 7:00
pm. The duration of its operation is 11 hours.

3.3 The notational duration of a note

In conventional musical notation, we have different symbols representing, for
example, half notes, quarter notes, eighth notes, and such. These differ in the
length of musical time they normally occupy. In formal musical texts, the property
that differs between these different kinds of note is called their time value. But it is
quite common, and reasonable, for the property to be spoken of as their “duration”.
However, in this report we will encounter other meanings of the term duration. To
avoid confusion, here I will generally speak of the time value of a note as its
notational duration.

3.4 The musical era of a note

Each note occupies (as its “realm”) a certain space in musical time, which I call its
musical era. The length of that I call the musical duration of the note.

In the “normal” situation, the musical duration of a note (or a rest, actually) is the
same as its notational duration. But later we will encounter some situations where
that it not so.

In any case, keep in mind that properly musical eras are contiguous: the beginning
of the musical era of a note or rest starts at the same instant as the end of the
musical era of the previous note or rest.1

4 PLAY OF A SCORE

4.1 Introduction

As mentioned earlier, it is very common for a notation program to be able to “play”
a score resident in the program. This is typically done by having the program, when
play is started by the user, send a MIDI sequence over a MIDI interface (physical or
virtual) to a synthesizer.

Nominally, the train of MIDI Note messages in this sequence starts the sounding of
each note at a “clock time” that corresponds, in light of the chosen play tempo, to
the start of the musical era of the note, and continues the sounding of each note

1 In some case the contiguity of the musical eras is interrupted when we cross the boundary
between measures, although that is anomalous.

MusicXML—the duration element Page 4

for a length of time (the play duration2) that corresponds, in light of the play tempo,
to the notational duration of the note.

But in many cases, the actual length of time that the note is sounded may differ a
bit from the notational duration. A common example is that the scorist may arrange
for the play duration to be less than the musical duration so as to bring about a
small gap between the sounding of the individual notes to avoid a “fully legato”
effect in play.

4.2 Underdata

As mentioned earlier, in a typical notation program, there are two layers of data
held for the score being worked on. One describes its musical components: notes,
rests, slur marks, and so forth, and the details of the physical layout of the
notation on the score.

The second, which I call the “underdata”, describes the details of how the score
should be “played”. This typically consists mainly of, for each note, the pitch and
loudness at which the note is to be sounded, the point in musical time at which its
sounding should commence, the and the point in musical time at which its
sounding should cease.

In many notation programs, the underdata is called the “MIDI data”. While that is
not technically precise, it is apt, since the underdata is generally a direct precursor
of a MIDI stream. In most case, the properties of the underdata are directly
comparable to the parameters of the resulting MIDI stream.

One distinction is that the underdata is in terms of musical time, while the resulting
MIDI stream is in terms of clock time. The two are related by the tempo at which
the score is being played.

4.3 Control of play duration

Absent some intervention by the scorist, the play start time and play duration in
the “underdata layer” should match the notational duration values of the note in
the “notation layer”.

But the scorist might not want it to work out that way. For example, it is quite
common in notation programs for the scorist to set, for work on a particular score,
the desired default play duration, often expressed as a percentage of the notational
duration of the notes. Setting this to, perhaps, 90% avoids the rendering of all the
notes, during play, in what would amount to a full legato style.

When speaking of this, it is common to call the musical time given by the
notational duration of the notes as their “face value”. Thus the scorist may set the

2 The term “performance duration” is sometimes used, and is attractive for its generality.
Nevertheless, here I use the term “play duration” for its conciseness.

MusicXML—the duration element Page 5

program so that notes deposited are given (in the underdata) play durations that are
“90% of face value”.

Many notation programs allow the scorist, perhaps on a graphic portrayal of the
underdata, to adjust the play start time and/or play duration of individual notes.
This is typically done to emulate, when the score is played, the subtleties of times
that a human performer would typically give the notes as rendered.

5 TRANSPORT VIA MusicXML—CONSERVATION OF THE UNDERDATA

The introduction to the MusicXML documentation reflects that the intent of
MusicXML is to transport both the definition of the score in terms of notation and
also what I have called the “underdata”, information that would allow the receiving
program to play the score. In fact, the extensive tutorial that illuminates the
MusicXML language states that there are two “parts” to the language, one devoted
to the notation and one, the “MIDI-compatible part”, devoted to conveying how the
score should sound when played.

The name for the latter part presumably comes from the fact that we can visualize
the underdata as a “script” that directs the generation of a MIDI sequence to be
sent to a synthesizer for play.

6 TWO PARTS OF A MusicXML FILE

The MusicXML documentation states that there are two part to the MusicXML
language:

1. The Notation part (which des not have that as an actual name). This describes
the actual visible notation.

2. The MIDI-compatible part (its actual name). This describes how the score should
sound, if played. We assume that its name comes from the fact that what it
conveys is, in a sense, a script for the generation of a MIDI stream (much as
was discussed from the perspective of a notation program in section 4.2).

7 THE ELEMENT <duration>

7.1 In the syntax

The specification makes it clear that there must be one and only one <duration>
element in (subordinate to) each <note> element.

7.2 Definition

The MusicXML documentation defines it thus (in part):

The duration element is an integer that represents a note’s duration. This is
the intended duration vs. notated duration.

MusicXML—the duration element Page 6

7.3 Meaning

This seems to most credibly suggest (so far) that ”intended duration” means “the
duration for which we expect the note to sound”, recognizing that this may in fact
not be the same as the notational duration of the note. (But there will be a further
twist to this plot.)

The fact that, in the MusicXML tutorial, <duration> is presented as a creature of
the MIDI-compatible part of MusicXML, rather than the Notation part, lends further
credibility to the interpretation above.

7.4 The unit

The unit of <duration> is the division, which is a certain fraction of the ideal
musical duration of a quarter note. That fraction is declared in a MusicXML file by
the element <divisions>, which is usually placed to be global to the score. If we
have:

<divisions>24</divisions>

then one division is 1/24 of the ideal musical duration of a quarter note.

What determines the value of <divisions> used in a certain MusicXML file? I’ll
discuss that after we see some of the things that are dominated in divisions. For
now we can think of it as essentially arbitrary.

8 THE ELEMENT <type>

8.1 In the syntax

The element <type> is optional, and may appear only once in the <note>?
element.

8.2 Definition

The MusicXML documentation defines the element <type> thus (in part):

Type indicates the graphic note type. . .

It does this as an enumerative variable, whose value may be ‘quarter”, ‘eighth’,
‘16th’, etc.

8.3 Raison d’etre

The MusicXML documentation introduces the <type> element by observing that
the receiving program should be able to deduce the intended note symbols (and
thus, notational direction) from the value of <duration>.

I interrupt the story to note here that in that case there is in fact no opportunity
for the “intended” duration of the note to be different from its notated duration.

MusicXML—the duration element Page 7

The discussion continues to say that the (optional) <note element> gives the
receiving program an explicit clue in that regard.

Does that in fact also open the door to the possibility that the “intended” duration
of the note (given by <duration>) would be different from its notational value
(given by <type>)? Seemingly.

8.4 Reality of practice

But we learn that, except in some rather esoteric cases, it is the practice in
contemporary use of MusicXML to always have the values of <type> and
<<duration> to be consistent. A consequence of that is the we don’t, by making
the value of <duration> less than consistent with the duration implied by
<type>, arrange for the sounding duration of the notes to be, for example, less
that the musical duration implied by <type>.

9 ENTER ATTACK AND RELEASE

9.1 Introduction

But that limitation is neatly overcome by the Music XML specification defining two
optional attributes of the <note> element, attack and release. These are defined
thus in the MusicXML documentation:

The attack and release attributes are used to alter the starting and stopping
time of the note from when it would otherwise occur based on the flow of
durations - information that is specific to a performance3. They are
expressed in terms of divisions, either positive or negative.

Again here there is an ambiguity, the meaning of “duration”. But by triangulating
among many passages in the MusicXML documentation, I conclude that
“durations” here must mean musical durations.

9.2 Application

As an example, assume that the value of <divisions> is 120, a quarter note is
being encoded, and we wish the note in the reconstructed score to sound for
“90% of face” (and, for completeness, we wish the sounding of the note in play to
commence at the nominal instant).

We then make <type> ‘quarter’ and <duration> ‘120’ (both defining the same
notational duration). And we give the <note> element the attribute release with
value “-12”. This causes the sounding of the note to cease 12/120 of the
notational division of a quarter note before its nominal ending instant.

3 I suspect that what is meant here would better have been said, “information that is specific to
performance”

MusicXML—the duration element Page 8

Suppose, in a more subtle definition of the sounding of the note, we want the
sounding of the note to commence “5% of face late” and extend until “10% of
face” from the end of the musical era of the note.. We again make <type>
“quarter” and <duration> “120” (both defining the same notational duration). We
give the <note> element the attribute attack with value “5”, and the attribute
release with value “-10”.

10 CHOICE OF A VALUE OF <DIVISIONS>

What determines the value of <divisions> in MusicXML file. It is essentially
arbitrary. But, if in fact we recognize <divisions> as given one of two definitions
of the notational value of the note the value of <divisions> must be large enough
that the notes to appear in the score can be properly represented. Thus, if the
score involves 16th notes (either on their own or as a “dot”), then the value of
<divisions> cannot be less than 4 (a 16th note has 1/4 the notational duration of
a quarter note).

In fact, a passage of the MusicXML documentation suggests that the value of
<divisions> be made no larger than is required as discussed just above.

This seems to rules out the thought that <duration> could be used to represent
the musical duration of a note (and thus, basically, its play duration) when the play
duration is different from the notational duration.

In fact, it is common for notation programs to uniformly use a value of “divisions”
that matches the units used internally for musical time matters. In Overture, for
example, the value of <divisions< is uniformly 480.

11 THE CURIOUS MATTER OF NOTES INÉGALES

11.1 Introduction

An interesting complication in seeking to interpret the <MusicXML documentation
to discern the intent of the <duration> element is the matter of the notes inégales
construction. The term is French, and means “unequal notes”. It is discussed in the
MusicXML tutorial.

The most common usage today of this principle is in the “swing eighths4”
construction, widely used in jazz and other genres. There, in a series of eighth
notes, the notes are considered in consecutive pairs. For each pair, in performance,
the first note is sounded for greater than its nominal duration, and the second note
for less than its nominal duration, the sum of the two performance durations
nominally matching the sum of the notes’ notational durations.

4 Sometimes called “swung eighths”

MusicXML—the duration element Page 9

11.2 Encoding in MusicXML

11.2.1 An obvious way

How might we encode into MusicXML such a structure? There is a very
straightforward way. For the first note of the pair, we apply the attribute release to
delay the ending of play, increasing the play duration of that note. For the second
note of the pair, we apply the attribute attack to delay the play start time of that
note to match, decreasing its play duration. (We may actually use a value of
release for the first note, and adjust the value of release for the second note, to
avoid the “full legato” effect.)

11.2.2 Another way

But the MusicXML tutorial suggests a different approach, this involving adjusting
the values of <duration> for the two notes. It presumes the following:

• The value of <duration> defines the musical duration of the note, which may
differ from its notational duration.

• The play era of the note in play would follow the musical era of the note.

Then, in the MusicXML encoding, we would give the first note a value of
<duration> that is greater than equivalent to the notational duration of the note,
and the second note a value of <duration> less than equivalent to the notational
duration of that note, the two values of <duration> adding to the sum of the
notational durations of the two notes.

Michael Good, the original developer of the MusicXML language and today its de
facto “keeper”, has suggested that this approach to the encoding of notes inégales
is essentially obsolete.

Harking to that, we can use the technique described in section 11.2.1 to deal with
the swing eighth structure (or even other more esoteric notes inégales structures.

And then we are free to adopt the outlook, suggested above, that <duration> and
<notes> should represent equivalent amounts of musical time.

12 WHAT DO CURRENT NOTATION PROGRAMS DO?

12.1 Introduction

It is instructive to see what current notation programs do in this area. My most
detailed investigations pertain to the programs Overture, MuseScore, and Finale.
My findings are synopsized here.

In all cases in this section I will discuss the situation in which the <note> element
contains both <type> and <duration> elements (almost universally the case for
MusicXML code generated by modern notation programs). But see section 13 for
information on the situation in which there is no >note> element.

MusicXML—the duration element Page 10

12.2 Overture

12.2.1 Version

This was observed with Overture version 5.6.3-3.

12.2.2 Receiving a MusicXML file

a. Overture relies on the <type> element to select the note symbol and to
establish its notational time.

b. Overture treats <duration> as defining the play duration of the note.

c. The attributes attack and release are not recognized.

12.2.3 Generating a MusicXML file

a. Overture makes the element <type> reflect the notational time of the note.

b. It makes the element <duration> reflect the play duration of the note.
Departure of the play start time from the nominal is not reflected.

c. The attributes attack and release are not used.

12.3 MuseScore

12.3.1 Version

This was observed with MuseScore version 3.5.2.

12.3.2 Receiving a MusicXML file

a. MuseScore relies on the <type> element to select the note symbol and to
establish its notational time.

b. It uses the value of <duration> to establish the musical time allotted to the
note. (This among other things implies the musical time at which the following
note commenced its reign.)

c. On Play, the sounding of the note commences at the start of the musical time
“reign” of the note. The play duration is equal to the notational time of the note
(“100% of face”).

d. The attributes attack and release are not recognized.

e. If the values of <duration> do not match the values implied by <type>,
MuseScore will generally give an error message upon loading of the MusicXML
file, and the notation structure for the measure may be “strange”, perhaps
involving a gratuitous rest to make up for the seeming discrepancy.

In summary, a sensible result will only be attained if the values of <duration>
match the notational durations implied by the values of <type>.

MusicXML—the duration element Page 11

“Doctor, when I make <duration> inconsistent with <type>, my
shoulder hurts.”

“So don’t make <duration> inconsistent with <type>.”

12.3.3 Generating a MusicXML file

The <type> element comes from the note symbol. The element <duration> has
a value corresponding to the notational time implied by the <type> elements.
Departures of the established play duration or play start time from the nominal are
not reflected in the encoding The attributes attack and release are not used.

12.4 Finale

12.4.1 Version

This was observed with Finale version 26.3.1

12.4.2 Special role of Finale?

We note that, especially given that Michael Good, the original developer of the
MusicXML language, and still its de facto principal “keeper”, is heavily involved in
the development of Finale, and that in fact Finale first got its MusicXML capability
by way of the plug-in “Dolet”, provided by Recordare, the firm within which the
MusicXML language was originally developed and promoted, we trend to think of
Finale as the arbiter of taste in matters MusicXML.

12.4.3 Receiving a MusicXML file

a. Finale creates the note symbol based on the value of <type>, and accords the
note an allotment of musical time to match.

b. If there is no attack and release attributes for a note, the play duration of the
note will be its notational duration.

c. The values of the <duration> elements for the note of a measure are added
up, and Finale treats the sum as the length (in musical time terms) of the
measure. After what is deemed to be the length of the measure, play of the first
note of the next measure commences forthwith. If the play of the notes in the
first measure has not been completed, it continues apace as well.

This behavior is truly bizarre.

A sensible result will only in general result if, in the incoming MusicXML code,
the value of <duration> matches the notational duration implied by the value
of <type>.

d. Finale responds appropriately to the attack and release attributes. It is most
useful to speak of this behavior in a case where the value of <duration>
corresponds to the notational time implied by <type>. Then, if there is an
attack attribute, the start of note sounding in play is shifted from its nominal

MusicXML—the duration element Page 12

value by the value of attack. If there is a release attribute, the end of note
sounding in play is shifted from its nominal value by the value of release.

12.4.4 Generating a MusicXML file

a. The element <type> states the symbol to be used for the note.

b. The element <duration> has a value corresponding to the notational time
implied by the <type> attribute.

c. Departures of the established play duration or play start time from the nominal
are not reflected in the encoding.

d. The attributes attack and release are not used.

13 WITH NO <type> ELEMENT

13.1 Introduction

I suspect it is today rare for a notation program to generate a MusicXML file ion
which the <note> elements were not provided with a <type> element. But that
possibility, perfectly legitimate according to the MusicXML documentation, plays a
role in our effort to divine the overall intended scheme regarding note durations.
Accordingly, I have made tests of the response to such a file of several notation
programs.

13.2 Overture

Tests were also made with Overture (version 5.6.3-3) of a MusicXML file in which
the note elements did not contain the optional <type> element.

a. Overture sets the note symbol (and thus the notational duration) based on the
value of <duration>, quantized to an increment of a 64th note.

b. If the value of <duration> exactly corresponds to the notational duration of the
chosen note type (no “rounding” was needed), Overture makes the musical
duration equal to the notational duration. It makes the play duration of the note
equal to 90% of the notational duration of that note. (This is presumably
Overture’s default default value to avoid a “fully legato” rendering.)

c. If the value of <duration> does not exactly correspond to the notational
duration of the chosen note type (“rounding” was involved), Overture makes the
musical duration equal to the notational duration. It makes the play duration of
the note equal to the notational duration of that note.

Perhaps as another part of that “plan”, when creating a MusicXML file, Overture
makes the value of <duration> one less than the value that would correspond to
the notational time of the note as given by the <type> element, which is always
included.

MusicXML—the duration element Page 13

13.3 MuseScore

Tests were made with MuseScore (version 3.5.2) of a MusicXML file in which the
note elements did not contain the optional <type> element. The <duration>
element values corresponded exactly to the notational durations of notes quarter,
eighth, 16th, etc., down to 128th.

a. MuseScore makes the note symbol ‘quarter’ (that also dictates the notational
duration) regardless of the value of <duration>.

b. The musical duration is made according to the value of <duration>

c. The play duration is made the same as the value of notational duration.

Suffice it to say that this can create a rather bizarre result on both notation and
play fronts. The play era of the last note(s) in a measure can well extend into the
realm of the next measure.

“Doctor, when I leave out the<type> element, my shoulder hurts.”

“So don’t leave out the <type> element.”

13.4 Finale

Tests were made with Finale (version 26.3.1) of a MusicXML file in which the note
elements did not contain the optional <type> element. The <duration> element
values corresponded exactly to the notational durations of notes quarter, eighth,
16th, etc., down to 128th.

a. MuseScore makes the note symbol in accordance with the value of
<duration>, seemingly to a resolution of a 2048th note.

b. The musical durations are made to essentially match the notational duration.

c. The play durations are made slightly less than the musical durations.

14 INTEROPERATION

Suffice it to say that this “diversity” (to be polite) in dealing with the element
<duration> in MusicXML among various notation programs does not bode well for
the successful interchange between different notation programs of scores that
include play durations or play start times departing from the nominal.

15 MY RECOMMENDATION

I recommend the following doctrine be adopted in MusicXML-enabled application
programs and the like.

15.1 Encoding in the MusicXML file

a. The notational duration (“time value”) of the note should be encoded in the
<type> element

MusicXML—the duration element Page 14

b. The <duration> element should be given a value consistent with the musical
duration implications of the <type> element.

c. If the established play duration or start time differ from the nominal, that should
be encoded using the attack and/or release attributes, as needed.

15.2 Response to the MusicXML encoding for a note

a. If there is a <note> element

1. Make the note symbol to match

2. Give the note a musical duration with the time value of the note symbol.

3. Ignore the <duration> element.

b. If there is no <note> element

1. Make the note symbol (and thus the notational duration) that implied by the
value of the <duration> element.

2. Give the note a musical duration (allotment of musical time) consistent with
the notational duration of the note symbol.

c. in either case:

1. Make the base play start time as implied by the start of the note’s musical
time era.

2. Make the base play duration that suggested by the notational duration of the
note symbol.

3. If there is an attack attribute and/or a release attribute, shift the play start
time and/or play end time (from those of the base play era) according to the
values of those attributes, respectively.

16 ISSUE RECORD

Issue 1, December 22, 2020. Initial issue.

-#-

