
dak
scientific and technical undertakings

Copyright © 2020-2021 Douglas A. Kerr. May be reproduced and/or distributed but only intact, including this notice.
Brief excerpts may be reproduced with credit.

3102 Thunder Road
Alamogordo, New Mexico 88310

Douglas A. Kerr, P.E. (Ret.)
Principal

575-921-6795
doug@dougkerr.net

TECHNICAL REPORT

Subject: MusicXML—the duration element

Issue: 4 Reference: MusicXML_duration*.doc

Date: May 12, 2021

Author: Douglas A. Kerr, P.E. (Ret.)

To: File

ABSTRACT AND INTRODUCTION

MusicXML is a language for transporting musical scores between musical notation
programs. It describes the score of interest in terms of its graphical notational
symbols and their arrangement on the page. It also conveys further details of how
the score is to be “played”.

An important (albeit optional) encoding of the MusicXML element for a note is the
element <duration>. The MusicXML documentation does not clearly explain the
intended meaning of <duration>. As a consequence, different notation program
developers have taken different and incompatible views as to how the value of that
element should be interpreted when reconstructing the score. As a result the
universal interchange of scores via MusicXML is severely compromised.

This report describes this situation, and suggests an “understanding” of the
meaning of the element <duration>.

1 ADMINISTRATIVE

1.1 Report not sponsored

This report, and the research underlying it, was not sponsored by, nor done at the
behest of, any external organization.

1.2 Distribution

This report is not “published”, but its distribution is not limited.

MusicXML—the duration element Page 2

1.3 Disclaimer

The author has used his best professional skill and available information in the
preparation of this report, but makes no representation that it is accurate or useful
for any purpose. The reader who relies upon this report does so at his own risk,
and the author cannot be responsible for any result not deemed satisfactory.

2 READER BACKGROUND

It is hoped that the reader is generally familiar with musical notation, with the
concept of music notation programs, and with the basics of the MusicXML
language.

But, considerable background pertinent to this topic is given in the companion
technical report, “MusicXML—background”, by the same author. It is probably
available where you got this. I commend it to the reader of this report.

3 THE MusicXML LANGUAGE

3.1 Introduction

The MusicXML language was developed to provide a standard language for the
transport of Mu8iscal scores between, most commonly, music notation programs,
given that programs from different publishers typically use, natively, parochial
formats for the representation of a score.

3.2 The “MusicXML documentation

What I will refer to here as the “MusicXML documentation” comprises in the main
three components:

• The syntactic specification. This is done in two form, each using a specialized
language. It describes the various syntactic ingredients of the MusicXML
language and how they may and must appear in the MusicXML file.

• The syntactic description. This is in textual form, and illuminates in a more
accessible form the implications of the syntactic specification.

• The tutorial. This describes, with the use of sample score excerpts and the
corresponding MusicXML code excerpts, the actual use of the MusicXML syntax
for many common score situations.

3.3 Critique

The MusicXML documentation describes in exquisite detail and precision the
lower-level structure of the MusicXML syntax.

But when we get to the higher syntactic level—perhaps what we could think of as
the “grammar” of the language—the document often leaves a number of
uncertainties. The result is that implementers of MusicXML in, for example,

MusicXML—the duration element Page 3

notation programs, must come to their own conclusions as to the fuller meaning of
various parts of the language. The result, of course, is that the transport of a score
from one notation program to another, via MusicXML is often significantly
imperfect in one matter or another. One of those matters is the use of the
MusicXML element <duration>.

4 TECHNICAL DEFINITIONS

4.1 Time

We will be concerned with two kinds of “time”:

1. Musical time is abstract, and quantifies the “flow” of the musical structure of
the notation itself. It is typically denominated in measures, beats, and in some
cases, fractions of a beat.

2. Clock time is the familiar “time”, and may be denominated in hours, minutes,
seconds, and in some cases, fractions of a second.

4.2 About “duration”

The word “duration” can in general have two meanings. One is the length of time
of an event (which implies noting about when it begins). (“The duration of the
concert was two hours.”) The other is the span of time of an event beginning at a
certain instant. (“The duration of the concert was from 4:00 pm to 6:00 pm.”) In
technical writing, the latter is often more precisely spoken of as an era. But here,
where there is little chance of confusion between the two, I will call both
“duration”.

4.3 Three durations of a note

4.3.1 The notational duration of a note

In conventional musical notation, we have different symbols representing, for
example, half notes, quarter notes, eighth notes, and such. These differ in the
length of musical time they normally occupy. In many musical texts, the property
that differs between these different kinds of note is called their time value. But it is
quite common, and reasonable, for the property to be spoken of as their “duration”.
However, in this report we will encounter other meanings of the term duration. To
avoid confusion, and for consistency with other terms we will encounter, here I will
generally speak of the time value of a note as its notational duration.

4.3.2 The musical duration of a note

Each note (or rest) occupies a certain amount of musical time, the musical duration
of the note. It is essentially the duration of the “realm” of the note. Perhaps its
most important role is as the amount of musical time before the “realm” of the next

MusicXML—the duration element Page 4

note begins. These realms of consecutive notes (or rests) are by definition
contiguous.

In the “normal” situation, the musical duration of a note (or a rest, actually) is the
same as its notational duration. But later we will encounter some situations where
that it not so; thus I have separate names for them.

Note that this term is not found in the MusicXML documentation. But we will
encounter there a term that we will consider equivalent to musical duration.

4.3.3 The performance duration of the note

When we play the score, each note sounds for a clock time that corresponds, given
the tempo of play, to a certain amount of musical time, commonly called the play
duration of the note. But for consistency with certain terminology in the MusicXML
documentation, here I will use the term performance duration.

In the simplest situation, the performance duration corresponds to the musical
duration of the note. But the scorist might want the performance duration to be
less than the musical duration. The usual reason is to avoid the play being “fully
legato” when that is not the musical style that is desired.

The performance duration of notes is often spoken of in terms of “% of face
value”, where “face value” alludes to the notational duration of the note.

5 ELEMENTS AND ATTRIBUTES

5.1 Introduction

The MusicXML language is a form of the XML language, and its details conform to
the basic concepts and structures of XML.

5.2 Elements and attributes

The basic ingredient in an XML file (and thus of a MusicXML file) is the element.
Elements are identified by XML “tags”, which bracket the element content. The
“opening” form of such a tag, in the classical formation, is: <box>, the “ending”
form of such a tag, again in the classical formation, is: </box>.

The properties of an object described by an element may be given in two different
ways. One is by subordinate (“child”) elements: The other is by attributes of the
element. The rationale for when a property should be defined one way and when
the other is mysterious.

5.3 Typographical conventions

In the text of the reports I will give the names of elements as if we were seeing
their opening tag, thus: “The element <box>”; I will give the names of attributes
underlined: “The attribute color.”

MusicXML—the duration element Page 5

6 CONTROL OF THE PERFORMANCE DURATION

Most modern notation programs allow the scorist various modes of control over the
performance duration of the notes. In some programs, the scorist can set a default
duration (usually as a fraction of the notational time) which deposited notes will
initially be given.

Often there is a graphical display on which the performance durations of the
individual notes can be seen as bars on a musical time scale. Typically the play
durations of one or more notes can be changed here, either by numerical input or
by “dragging” the end of the bar. In many cases, the data describing the
performance durations of the notes is spoken of as “MIDI data”, since it is in effect
the precursor of the MIDI data that will be sent to a sound module during actual
play.

In many cases, the scorist can not only control the performance duration of the
notes but as well their performance start time. For example, for certain notes, the
scorist may arrange for the “sounding” in play to commence not at the beginning of
the “realm” of the note but perhaps what amounts to the time of a 32nd note
“late”, this being done to attain a certain musical style effect.

7 TWO PARTS OF A MusicXML FILE

The MusicXML documentation states that there are two parts of a MusicXML file:

1. The Notation part (which des not have that as an actual name, but I will call it
by that “name”). This describes the actual visible notation.

2. The “MIDI-compatible part” (its actual formal name). This describes how the
score should sound if played. We assume that its name comes from the fact
that what it conveys is, in a sense, a script for the generation of a MIDI stream,
by way of which a sound module will be caused to perform the notes.

Does the MIDI-compatible part include provisions for representing, at the pleasure
of the composer’s notation program, the performance duration (and offset of the
performance start time) of a note? Yes. But is not fully clear just how that is
supposed to work.

8 The unit

The musical time unit which applies to the element <duration> and other
creatures we will meet shortly, is the division, which is a certain fraction of the
ideal musical duration of a quarter note. That fraction is declared in a MusicXML
file by the element <divisions>, which is usually placed at the beginning of a part
(it could vary from part-to-part)1. If we have:

<divisions>24</divisions>

1 In fact it can change in the middle of a part.

MusicXML—the duration element Page 6

then one division is 1/24 of the ideal musical duration of a quarter note.

What determines the value of <divisions> used in a certain MusicXML file? For
now we can think of it as essentially arbitrary. We will hear more about that in a
little while.

9 THE MusicXML ELEMENT <duration>

9.1 Introduction

The author has made an extensive analysis of the relevant passages of the
MusicXML Documentation. This was assisted by various statements made in
various forums by Michael Good, the original developer of the MusicXML language
and its current de facto “keeper”.

What follows to some extent reconstructs that analysis and its conclusions.

9.2 In the syntax

In a properly-formed MusicXML file, each <note> element contains (among many
other things) one and only one <duration> element.

9.3 Definition

The MusicXML documentation defines the <duration> element thus (in part):

The duration element is an integer that represents a note’s duration. This is
the intended duration vs. notated duration.

9.4 Meaning

It at first seems that ”intended duration” means “the duration for which we expect
the note to sound” (our play duration), recognizing that this may in fact not be the
same as the notational duration of the note.

The fact that, in the MusicXML tutorial, <duration> is presented as a creature of
the MIDI-compatible part of MusicXML, rather than the Notation part, lends further
credibility to the interpretation above.

In fact, a more accurate definition is that <duration> defines the musical duration
of the notes. The main significance of that is that it tells where the next note
starts, in musical time terms. Insofar as the graphic score is concerned, that is an
abstract construct. It only takes on concrete significance when the score is played
(by a human or by the program through a sound module).

But we will see shortly why the musical duration may in fact not be the same as
the performance duration.

MusicXML—the duration element Page 7

10 THE ELEMENT <type>

10.1 In the syntax

The element <type> is optional, and may appear only once in a <note> element.

10.2 Definition

The MusicXML documentation defines the element <type> thus (in part):

Type indicates the graphic note type. . .

It does this as an enumerative text variable, whose value may be ‘quarter’,
‘eighth’, ‘16th’, etc.

10.3 Significance

The value of <type> defines the notation symbol to be placed for the note.

10.4 Absent a <type> element

If for a note there is no <type> element (perfectly legitimate), the receiving
program is expected to deduce the “time value” of the note, and thus the proper
symbol for its notation, from the musical duration of the note, which came from
the <duration> element.

10.5 Raison d’etre

The MusicXML documentation introduces the <type> element by observing that
the receiving program should be able to deduce the intended note symbols (and
thus, notational duration) from the value of <duration>.

The discussion continues to say that, however, the (optional) <note> element
gives the receiving program an explicit clue in that regard (perhaps thus easing the
work of the receiving program).

In fact, if there is no <type> element for a note, the receiving program has no
choice but to deduce the intended note symbol (and thus, the notational duration)
from the value of <duration>.

10.6 Two ways of stating the same thing?

So if there is a <type> element, what is then the significance of the <duration>
element (which must also appear)? Is that just a different way to state the same
thing that is stated by the <duration> element, and thus both elements should
describe (in their own ways) the same duration? So it would seem. (But this is not
clearly confirmed in the MusicXML documentation.)

MusicXML—the duration element Page 8

10.7 What about performance duration?

Accepting that, when there is a <type> element, the <duration> element should
describe a musical duration consistent with the symbol defined by <type>, and
assuming that the performance duration should be the same as that, we certainly
can’t use <duration> to describe a performance duration that is different from the
notational duration.

But, as mentioned earlier, we often arrange for that difference in our notation
program, and probably want that conveyed to the receiving program when we
transport the score via MusicXML. Have we talked ourselves out of being able to
do that?

11 ENTER attack AND release

11.1 Introduction

That need is neatly accommodated by two optional attributes of the <note>
element, attack and release. These are defined thus in the MusicXML
documentation:

The attack and release attributes2 are used to alter the starting and
stopping time of the note from when it would otherwise occur based on
the flow of durations - information that is specific to a performance3. They
are expressed in terms of divisions, either positive or negative.

Again here there is an ambiguity, the meaning of “duration”. But by triangulating
among many passages in the MusicXML documentation, I conclude that
“durations” here must mean musical durations.

11.2 Application

As an example, assume that the value of <divisions> is 120, a half note is being
encoded, and we wish the note in the reconstructed score to sound for “90% of
face” (and, to be complete, we wish the sounding of the note in play to commence
at the nominal start of the realm of the note).

We then make <type> ‘half’ and <duration> 240, both defining the same
notational duration, and <duration> as well defining the musical duration. And we
give the <note> element the attribute release with value -24. This causes the
sounding of the note to cease 24/120 of the nominal musical duration of a quarter

2 Do not confuse these attributes of an element with the MusicXML element <attributes>, which
gives a number of properties of a part (spoken of as “attributes”) in the form of child elements. The
element <divisions> is in fact one such “attribute”. Aargh!

3 I suspect that what is meant here would better have been said, “information that is specific to
performance” (not “a performance”).

MusicXML—the duration element Page 9

note (10% of the nominal musical duration of the half note) before the end of the
musical duration of the half note.

Suppose, in a more subtle definition of the sounding of the note, we want the
sounding of the note to commence “5% of face” late and extend until “10% of
face” from the end of the musical duration of the note.. We again make <type>
‘half’ and <duration> 240 (both defining the same notational duration). and
<duration> as well defining the musical duration. We give the <note> element
the attribute attack with value 12, and the attribute release with value -24.

12 CHOICE OF A VALUE OF <divisions>

What determines the value of <divisions> in MusicXML file? It is essentially
arbitrary. But, if in fact we recognize <divisions> as giving one of two definitions
of the notational duration of the note, the value of <divisions> must be large
enough that the notes to appear in the score can be properly represented. Thus, if
the score involves 16th notes (either on their own or as a “dot” on an eighth note),
then the value of <divisions> cannot be less than 4 (a 16th note has 1/4 the
notational duration of a quarter note).

In fact, a passage of the MusicXML documentation suggests that the value of
<divisions> be made no larger than is required as discussed just above.

This seems to rule out the thought that <duration> could be used to represent the
musical duration of a note (and thus, basically, its performance duration) when the
performance duration is different from the notational duration. This is in fact
consistent with the conclusion I have come to above.

Some notation programs uniformly use a value of “divisions” that matches the
units used internally for musical time matters. In Overture, for example, the value
of <divisions< is uniformly 480. That is well suited to using <duration> to
represent play duration to a fine resolution. Except that I don’t think it should be
used for that.

13 AN ALTERNATE VIEW

In the discussion above, I adopt the conclusion that the likely intent of the
MusicXML specification (adjusted for some modern pragmatic considerations) is
that <duration> states the musical duration of the note (most often duplicating
what is given, in a different form, by <type>).

But it is understandable that some developers have concluded that the purpose of
<duration> is to give the performance duration of a note, which might well be
different from its musical duration.

This of course leads to the prospect of error when transporting a score between
notation programs whose logic is predicated on these two disparate views.

MusicXML—the duration element Page 10

14 THE CURIOUS MATTER OF NOTES INÉGALES

14.1 Introduction

An interesting complication in seeking to interpret the <MusicXML documentation
to discern the intent of the <duration> element is the matter of the notes inégales
construction. The term is French, and means “unequal notes”. It is explicitly
mentioned in the MusicXML tutorial.

The most common usage today of this principle is in the “swing eighths4”
construction, widely used in jazz and other genres. There, in a series of eighth
notes, the notes are considered in consecutive pairs. For each pair, in performance,
the first note is sounded for greater than its nominal duration, and the second note
for less than its nominal duration, the sum of the two performance durations
nominally matching the sum of the notes’ notational durations.

14.2 Encoding in MusicXML

14.2.1 An obvious way

How might we encode into MusicXML such a structure? There is a very
straightforward way, using tools we heard of above. For the first note of the pair,
we apply the attribute release to delay the ending of play, increasing the
performance duration of that note. For the second note of the pair, we apply the
attribute attack to delay the performance start time of that note to match,
decreasing its performance duration.

In addition, we may actually also adjust the value of release for the first note, and
use a release for the second note, to avoid the “full legato” effect.)

14.2.2 Another way

But the MusicXML tutorial suggests a different approach, this involving adjusting
the values of <duration> for the two notes. It presumes that in this construct, the
value of <duration>, defines the musical duration of the note, which here may
differ from its notational duration.

Then, in the MusicXML encoding, we would give the first note a value of
<duration> that is greater than equivalent to the notational duration of the note,
and the second note a value of <duration> less than equivalent to the notational
duration of that note, the two values of <duration> adding to the sum of the
notational durations of the two notes.

Michael Good, the original developer of the MusicXML language and today its de
facto “keeper”, in a forum devoted to MusicXML development, has suggested that
this approach to the encoding of notes inégales, intimated by the MusicXML

4 Sometimes called “swung eighths”

MusicXML—the duration element Page 11

tutorial, is essentially obsolete, implying that the technique described in section
14.2.1 is used instead.

14.2.3 Probably the best way

Harking to that, we can use the technique described in section 14.2.1 to deal with
the swing eighth structure (or even other more esoteric notes inégales structures).

And then we are free to adopt the outlook, suggested earlier, that <duration> and
<type>, when both are present, should represent equivalent amounts of musical
time.

15 WHAT DO CURRENT NOTATION PROGRAMS DO?

15.1 Introduction

It is instructive to see what current notation programs do in this area. My most
detailed investigations pertain to the programs Overture, MuseScore, and Finale.
My findings are synopsized here.

In all cases in this section I will discuss the situation in which the <note> element
contains both <type> and <duration> elements (almost universally the case for
MusicXML code generated by modern notation programs).

15.2 Overture

15.2.1 Version

This was observed with Overture version 5.6.3-3.

15.2.2 Receiving a MusicXML file

a. Overture relies on the <type> element to select the note symbol and to
establish its notational duration.

b. Overture treats <duration> as defining the performance duration of the note.

c. The attributes attack and release are not recognized.

15.2.3 Generating a MusicXML file

a. Overture makes the element <type> reflect the notational duration of the note.

b. It makes the element <duration> reflect the performance duration of the note.
Departure of the play start time from the nominal is not reflected.

c. The attributes attack and release are not used.

MusicXML—the duration element Page 12

15.3 MuseScore

15.3.1 Version

This was observed with MuseScore version 3.5.2.

15.3.2 Receiving a MusicXML file

a. MuseScore relies on the <type> element to select the note symbol and to
establish its notational duration.

b. It uses the value of <duration> to establish the musical duration of the note.
(This among other things implies the musical time at which the following note
commences its realm.)

c. On play, the sounding of the note commences at the start of the musical time
realm of the note. The performance duration is equal to the notational time of
the note (“100% of face”).

d. The attributes attack and release are not recognized.

e. The total of the <duration> values is taken my MuseScore to be the intended
musical time length of the measure. If that does not match the length given by
the time signature, MuseScore will give an error message upon loading of the
MusicXML file. If we proceed anyway, the notation structure for the measure
may be “strange”, perhaps involving a gratuitous rest to make up for the
seeming discrepancy.

Here, a sensible result will only be attained if the values of <duration> match the
notational durations implied by the values of <type>.

15.3.3 Generating a MusicXML file

The <type> element comes from the note symbol. The element <duration> has
a value corresponding to the notational time implied by the <type> elements.
Departures of the established play duration or play start time from the nominal are
not reflected in the encoding. The attributes attack and release are not used.

15.4 Transport of scores from Overture to MuseScore via MusicXML

Transport of score from Overture to MuseScore via MusicXML is at this time of
special interest to the author and a colleague. As to the matter of note durations, a
sensible result in MuseScore will only result if, before generating the MusicXML file
from the score in Overture, all note performance durations must be set to “100%
of face” and any offsets of play start times expunged.

Of course in some cases these timing subtleties were achieved either by initially
recording the work as performed by a human player on a MIDI-connected keyboard,
or were tediously crafted by the scorist. In either case, when this score is carried
across the River Styx in MusicXML form, all those subtleties must be jettisoned.

MusicXML—the duration element Page 13

15.5 Finale

15.5.1 Version

This was observed with Finale version 26.3.1

15.5.2 Special role of Finale?

We note that, especially given that Michael Good, the original developer of the
MusicXML language, and still its de facto principal “keeper”, is heavily involved in
the development of Finale, and that in fact Finale first got its MusicXML capability
by way of the plug-in “Dolet”, provided by Recordare, the firm within which the
MusicXML language was originally developed and promoted, we trend to think of
Finale as the arbiter of taste in matters MusicXML.

15.5.3 Receiving a MusicXML file

a. Finale creates the note symbol based on the value of <type>, and makes the
musical duration to match.

b. If there are no attack and/or release attributes for a note, the play duration of
the note will be its notational duration.

c. The values of the <duration> elements for the note of a measure are added
up, and Finale treats the sum as the length (in musical time terms) of the
measure. After what is deemed to be the length of the measure, play of the first
note of the next measure commences forthwith. If the play of the notes in the
first measure has not been completed, it continues apace as well.

This behavior of itself is truly bizarre.5 But it would be moot for a MusicXML file
in which, for each note, the value of <duration> matches the notational
duration implied by the value of <type> (in accordance with the interpretation
of the MusicXML specification I recommend).

d. Finale responds appropriately to the attack and release attributes. It is most
useful to speak of this behavior in a case where the value of <duration>
corresponds to the notational time implied by <type>. Then, if there is an
attack attribute, the start of note sounding in play is shifted the time it would
otherwise have by the value of attack. If there is a release attribute, the end of
the note sounding in play is shifted from when it would otherwise be by the
value of release.

15.5.4 Generating a MusicXML file

a. The element <type> states the symbol to be used for the note.

b. The element <duration> has a value corresponding to the notational time
implied by the <type> attribute.

5 It is somewhat parallel to the behavior of MuseScore version 3.5.2.

MusicXML—the duration element Page 14

c. Departures of the established play duration or play start time from the nominal
are not reflected in the encoding.

d. The attributes attack and release are not used.

16 WITH NO <type> ELEMENT

16.1 Introduction

I suspect it is today rare for a notation program to generate a MusicXML file ion
which the <note> elements were not provided with a <type> element. But that
possibility, perfectly legitimate according to the MusicXML documentation, plays a
role in our effort to divine the overall intended scheme regarding note durations.
Accordingly, I have made tests of the response to such a file of several notation
programs.

16.2 Overture

Tests were also made with Overture (version 5.6.3-3) of a MusicXML file in which
the note elements did not contain the optional <type> element.

a. Overture sets the note symbol (and thus the notational duration) based on the
value of <duration>, quantized to an increment of a 64th note.

b. If the value of <duration> exactly corresponds to the notational duration of the
chosen note type (no “rounding” was needed), Overture makes the musical
duration equal to the notational duration. It makes the play duration of the note
equal to 90% of the notational duration of that note. (This is presumably
Overture’s default default value to avoid a “fully legato” rendering.)

c. If the value of <duration> does not exactly correspond to the notational
duration of the chosen note type (“rounding” was involved), Overture makes the
musical duration equal to the notational duration. It makes the play duration of
the note equal to the notational duration of that note.

Perhaps as another part of that “plan”, when creating a MusicXML file, Overture
makes the value of <duration> one less than the value that would correspond to
the notational time of the note as given by the <type> element, which is always
included.

16.3 MuseScore

Tests were made with MuseScore (version 3.5.2) of a MusicXML file in which the
note elements did not contain the optional <type> element. The <duration>
element values corresponded exactly to the notational durations of notes quarter,
eighth, 16th, etc., down to 128th.

a. MuseScore makes the note symbol ‘quarter’ (that also dictates the notational
duration) regardless of the value of <duration>.

b. The musical duration is made according to the value of <duration>

MusicXML—the duration element Page 15

c. The play duration is made the same as the value of notational duration.

Suffice it to say that this can create a rather bizarre result on both notation and
play fronts. The play duration of the last note(s) in a measure can well extend into
the realm of the next measure.

16.4 Finale

Tests were made with Finale (version 26.3.1) of a MusicXML file in which the note
elements did not contain the optional <type> element. The <duration> element
values corresponded exactly to the notational durations of notes quarter, eighth,
16th, etc., down to 128th.

a. MuseScore makes the note symbol in accordance with the value of
<duration>, seemingly to a resolution of a 2048th note.

b. The musical durations are made to essentially match the notational duration.

c. The play durations are made slightly less than the musical durations.

17 INTEROPERATION

Suffice it to say that this “diversity” (to be polite) in dealing with the element
<duration> in MusicXML among various notation programs does not bode well for
the successful interchange between different notation programs of scores that
include play durations or play start times departing from the nominal.

18 MY RECOMMENDATION

I recommend the following doctrine be adopted in MusicXML-enabled application
programs and the like.

18.1 Encoding in the MusicXML file

a. The notational duration (“time value”) of the note should be encoded in the
<type> element.

b. The <duration> element should be given a value consistent with the musical
duration implications of the <type> element.

c. If the established play duration or start time differ from the nominal, that should
be encoded using the attack and/or release attributes, as needed.

18.2 Response to the MusicXML encoding for a note

a. If there is a <note> element:

1. Make the note symbol to match

2. Give the note a musical duration with the time value of the note symbol.

3. Ignore the <duration> element.

b. If there is no <note> element:

MusicXML—the duration element Page 16

1. Make the note symbol (and thus the notational duration) that implied by the
value of the <duration> element.

2. Give the note a musical duration (allotment of musical time) consistent with
the notational duration of the note symbol.

c. in either case:

1. Make the base play duration the same as the note’s musical duration.

2. If there is an attack attribute and/or a release attribute, shift the play start
time and/or play end time (from those of the base play duration) according to
the values of those attributes, respectively.

19 ISSUE RECORD

Issue 4, May 12, 2021 (this issue). Editorial changes.

Issue 3, January 30, 2021. Editorial changes.

Issue 2, January 4, 2021. Editorial changes.

Issue 1, December 22, 2020. Initial issue.

-#-

