
MuseScore Keypad
Copyright Don Horrell 2015. All rights reserved.
The intellectual property rights for the MuseScore Keypad described in this
document, and any derived works, belong to Don Horrell.

You may only use this freely for non-commercial work.
If you would like to use this for commercial work, please contact me so that
we can agree royalty fees.

Building and using this hardware is done at your own risk. I cannot take
responsibility for any damage caused.

Introduction
Welcome to the MuseScore Keypad.

The aim of this hardware plugin is to produce a keypad that will help you to
enter notes into MuseScore. The idea is to use a MIDI keyboard with one
hand to enter the notes, and to use the MuseScore Keypad with the other
hand to select note lengths, enter rests etc. This will avoid most of the need to
constantly switch to using your mouse.
If you are a drummer, you may wish to investigate the keyboard shortcuts for
the various drums and add those to your MuseScore Keypad. Perhaps your
keypad layout would match the layout of a standard drum kit.

In the photo above, the keys labelled 1 – 4 are to select voices 1 to 4. “N” is to
toggle note entry mode and “.” is the augmentation dot for entering dotted
notes.

At the moment the MuseScore Keypad is just a working prototype. I was
hoping to have some nice keys with pictures of crotchets, minims etc. but
Maplin do not sell keyboard switches with removable tops any more. It would
be ideal if the keyswitch for the crotchet (quarter note) had a raised bump, just
like the F and J keys have on a standard keyboard, to make the key easier to
find without looking down.

No drivers are required. The MuseScore Keypad emulates a standard
keyboard, so it works with Windows and should be fine with Mac and Linux.

No external power supply is needed. The MuseScore Keypad is powered by
the USB port.

I have tested the prototype with MuseScore 2.0.1 on Windows Vista.

Hardware
The hardware is very simple. All you need is:

• A Teensy LC (I bought one from HobbyTronics
http://www.hobbytronics.co.uk/teensy-boards/teensy-lc).

• Some PCB-mounting keyboard switches.

• A USB A to micro B USB cable.

• A bit of stripboard, solder and some wire.

Development Software
You will need to download and install the following (free) software to build the
code and upload it to the Teensy LC:

• Arduino programming software (arduino-1.6.5-r2-windows).

• TeensyDuino plugin for the Arduino programming software.

• The Teensy loader.

The instructions for downloading and installing the code are here:
https://www.pjrc.com/teensy/td_download.html
https://www.pjrc.com/teensy/loader.html

Getting Started
Remember that the Teensy LC is a static-sensitive piece of electronics, so it
can be damaged by the static charge that builds up on our bodies. To reduce
the likelihood of damage:

• Wear an earthing strap.

• Handle the Teensy LC as little as possible, and only by the edges.

Before you rush off to compile the code, start by plugging your Teensy LC into
a USB port. The LED on the Teensy LC board should flash.

Press and release the small button on the board and it will stop flashing.
Unplug it now and read on.

MuseScore Keypad Hardware
To build the hardware, all you need to do is connect one side of your keypad
switches to the GND connection on the Teensy, and the other to the
connections labelled 0 to 14. There is no need to use pull-up resistors.

MuseScore Keypad Software
The MuseScore Keypad works just like a normal USB keyboard, so it can use
the keyboard shortcuts that are configured into MuseScore.

The TeensyDuino plugin software comes with some example code that just
needs a slight change before loading into the Teensy LC.

You can modify the code so that pushing a button on the MuseScore Keypad
will use one of the MuseScore keyboard shortcuts. For example, you can
modify the code to write “5” and so select a crotchet (quarter note) for the next
note that you enter.
You can write “0” to enter a rest.

Start the Arduino programming software:

From the Tools menu, select Board and “Teensy LC”:

From the Tools menu again, select USB Type and “Keyboard + Mouse +
Joystick”

And again from the Tools menu, select Keyboard Layout and “United
Kingdom”.

Load the demo code by selecting the File menu and then Examples | Teensy |
USB_Keyboard | Buttons:

This opens a new window, which displays the example code:

You can try running this code.
To test, start a text editor or word processor. Make sure it is the active
program, then VERY CAREFULLY look on the underside of the Teensy LC
and connect any one of the pads labelled 0 to 9 to one of the pads labelled
GND. You just need to touch the wire to the pad briefly.

The text editor or word processor will display some text.

MuseScore Keypad Code

If you scroll down, you will find the following short piece of code:

For the MuseScore Keypad, all we need to do is to replace the pieces of text
like “B0 press” with something more useful, like the “2” to “7” to set the note
lengths, “0” to enter a rest and perhaps a few other keys, depending on how
many keyboard switches you have. The more I thought about this, the more
keys I thought would be useful.

My suggested mappings are:

Digital Input Keyboard text Description
0 0 Enter a rest using the current note length.
1 . (dot) Toggle the augmentation dot.
2 2 Demi-semi quaver (32nd note).

3 3 Semi-quaver (16th note).
4 4 Quaver (8th note).
5 5 Crotchet (quarter note).
6 6 Minim (half note).
7 7 Semibreve (whole note).
8 n Toggle note entry mode.

9 Ctrl-Alt-1 Voice 1.
10 Ctrl-Alt-2 Voice 2.
11 Ctrl-Alt-3 Voice 3.
12 Ctrl-Alt-4 Voice 4.
13 Left Move left.
14 Right Move right.

Here is the complete software for the suggested mappings. You can cut and
paste this into the Arduino programming software.

/*

 Copyright Don Horrell 2015. All rights reserved.

 You must select Keyboard from the "Tools > USB Type" menu.

*/

#include <Bounce.h>

#define DEBOUNCE_MS 15

// Create Bounce objects for each button. The Bounce object

// automatically deals with contact chatter or "bounce", and

// it makes detecting changes very simple.

Bounce button0 = Bounce(0, DEBOUNCE_MS);

Bounce button1 = Bounce(1, DEBOUNCE_MS); // 10 = 10 ms debounce time

Bounce button2 = Bounce(2, DEBOUNCE_MS); // which is appropriate for

Bounce button3 = Bounce(3, DEBOUNCE_MS); // most mechanical

pushbuttons

Bounce button4 = Bounce(4, DEBOUNCE_MS);

Bounce button5 = Bounce(5, DEBOUNCE_MS); // if a button is too

"sensitive"

Bounce button6 = Bounce(6, DEBOUNCE_MS); // to rapid touch, you can

Bounce button7 = Bounce(7, DEBOUNCE_MS); // increase this time.

Bounce button8 = Bounce(8, DEBOUNCE_MS);

Bounce button9 = Bounce(9, DEBOUNCE_MS);

Bounce button10 = Bounce(10, DEBOUNCE_MS);

Bounce button11 = Bounce(11, DEBOUNCE_MS);

Bounce button12 = Bounce(12, DEBOUNCE_MS);

Bounce button13 = Bounce(13, DEBOUNCE_MS);

Bounce button14 = Bounce(14, DEBOUNCE_MS);

void setup() {

 // Configure the pins for input mode with pullup resistors.

 // The pushbuttons connect from each pin to ground. When

 // the button is pressed, the pin reads LOW because the button

 // shorts it to ground. When released, the pin reads HIGH

 // because the pullup resistor connects to +5 volts inside

 // the chip. LOW for "on", and HIGH for "off" may seem

 // backwards, but using the on-chip pullup resistors is very

 // convenient. The scheme is called "active low", and it's

 // very commonly used in electronics... so much that the chip

 // has built-in pullup resistors!

 pinMode(0, INPUT_PULLUP);

 pinMode(1, INPUT_PULLUP);

 pinMode(2, INPUT_PULLUP);

 pinMode(3, INPUT_PULLUP);

 pinMode(4, INPUT_PULLUP);

 pinMode(5, INPUT_PULLUP);

 pinMode(6, INPUT_PULLUP); // Teensy++ LED, may need 1k resistor

pullup

 pinMode(7, INPUT_PULLUP);

 pinMode(8, INPUT_PULLUP);

 pinMode(9, INPUT_PULLUP);

 pinMode(10, INPUT_PULLUP);

 pinMode(11, INPUT_PULLUP);

 pinMode(12, INPUT_PULLUP);

 pinMode(13, INPUT_PULLUP);

 pinMode(14, INPUT_PULLUP);

}

void loop() {

 // Update all the buttons. There should not be any long

 // delays in loop(), so this runs repetitively at a rate

 // faster than the buttons could be pressed and released.

 button0.update();

 button1.update();

 button2.update();

 button3.update();

 button4.update();

 button5.update();

 button6.update();

 button7.update();

 button8.update();

 button9.update();

 button10.update();

 button11.update();

 button12.update();

 button13.update();

 button14.update();

 // Check each button for "falling" edge.

 // Type a message on the Keyboard when each button presses

 // Update the Joystick buttons only upon changes.

 // falling = high (not pressed - voltage from pullup resistor)

 // to low (pressed - button connects pin to ground)

 if (button0.fallingEdge()) {

 Keyboard.print("0"); // Enter a rest of the current note

length.

 }

 if (button1.fallingEdge()) {

 Keyboard.print("."); // Toggle augmentation dot.

 }

 if (button2.fallingEdge()) {

 Keyboard.print("2"); // Demi-semi quaver (32nd note).

 }

 if (button3.fallingEdge()) {

 Keyboard.print("3"); // Semi quaver (16th note).

 }

 if (button4.fallingEdge()) {

 Keyboard.print("4"); // Quaver (8th note).

 }

 if (button5.fallingEdge()) {

 Keyboard.print("5"); // Crotchet (quarter note).

 }

 if (button6.fallingEdge()) {

 Keyboard.print("6"); // Minim (half note).

 }

 if (button7.fallingEdge()) {

 Keyboard.print("7"); // Semibreve (note).

 }

 if (button8.fallingEdge()) {

 Keyboard.print("n"); // Toggle note entry mode.

 }

 if (button9.fallingEdge()) {

 ctrlAltPlus(KEY_1); // Voice 1.

 }

 if (button10.fallingEdge()) {

 ctrlAltPlus(KEY_2); // Voice 2.

 }

 if (button11.fallingEdge()) {

 ctrlAltPlus(KEY_3); // Voice 3.

 }

 if (button12.fallingEdge()) {

 ctrlAltPlus(KEY_4); // Voice 4.

 }

 if (button13.fallingEdge()) {

 pressKey(KEY_LEFT); // Move left.

 }

 if (button14.fallingEdge()) {

 pressKey(KEY_RIGHT); // Move right.

 }

}

void ctrlAltPlus(int keycode){

 // Press the control, alt then the character.

 Keyboard.set_modifier(MODIFIERKEY_CTRL | MODIFIERKEY_ALT);

 Keyboard.send_now();

 // press DELETE, while CLTR and ALT still held

 Keyboard.set_key1(keycode);

 Keyboard.send_now();

 // release all the keys at the same instant

 Keyboard.set_modifier(0);

 Keyboard.set_key1(0);

 Keyboard.send_now();

}

void pressKey(int keycode){

 Keyboard.set_key1(keycode);

 Keyboard.send_now();

 Keyboard.set_key1(0);

 Keyboard.send_now();

}

Save the project, then click on the Upload icon. You may need to press the
button on the Teensy – the Arduino software will tell you to do this if it is
necessary.

You can test the software by starting a text editor or word processor. Make
sure it is the active program, then press the keys on the MuseScore keypad.
When you are happy that some of the keys are working, start MuseScore and
test that all the keys trigger the correct functions.

When it is all working, enjoy!

